A 小红的图
| a=1,b=1 | a=2,b=1 |
|---|---|
| a=1,b=2 | a=2,b=2 |
void solve() {
int a, b;
cin >> a >> b;
if (a == 1 && b == 1) cout << "LU" << "\n";
if (a == 1 && b == 2) cout << "LD" << "\n";
if (a == 2 && b == 1) cout << "RU" << "\n";
if (a == 2 && b == 2) cout << "RD" << "\n";
}
B 小红的菊花
因为和其他点都有边,所以度为 $n-1$ 的点就是中心。
void solve() {
int n;
cin >> n;
vector<int> d(n + 1);
for (int i = 1; i < n; ++i) {
int u, v;
cin >> u >> v;
d[u]++, d[v]++;
}
for (int i = 1; i <= n; ++i) {
if (d[i] == n - 1) {
cout << i << "\n";
return;
}
}
}
C 小红的好矩形
面积为 $2$ 的矩形要么是 $1\times 2$ 的,要么是 $2\times 1$ 的,统计一下即可。
void solve() {
ll n, m;
cin >> n >> m;
cout << n*(m - 1) + m*(n - 1) << "\n";
}
D 小红嫁接
对于一个度大于 $2$ 的点,把 $d-2$ 条边移走即可。
void solve() {
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i < n; ++i) {
int u, v;
cin >> u >> v;
a[u]++, a[v]++;
}
int ans = 0;
for (int i = 1; i <= n; ++i) {
if (a[i] > 2) ans += a[i] - 2;
}
cout << ans << "\n";
}
E 小红玩马
先 $BFS$ 求到 $(x_2,y_2)$ 的距离,距离如果大于 $k$ 或者到达不了就肯定不行。
然后找到这条路径,如果这条路径的长度 $n$ 满足 $k-n$ 为偶数,我们就能在 $n$ 步到达终点后通过跳过来跳回去的方法消耗偶数个步数。
关于只有偶数个步数才能被消耗的证明:
- 记当前坐标为 $(x,y)$ ,由于是日字形移动,所以在移动一次后,横纵坐标之和的奇偶性必然改变。
- 故只有偶数步才能回到原点。
注意需要特判当起点与终点相同,且步数为偶数时,棋盘上是否存在可以移动的点。
void solve() {
int n, m, k;
cin >> n >> m >> k;
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
auto check = [&](int x, int y) -> bool{
return 1 <= x && x <= n && 1 <= y && y <= m;
};
auto encode = [&](int x, int y) {
return (x - 1) * m + (y - 1);
};
auto decode = [&](int id)->PII{
return {id / m + 1, id % m + 1};
};
int s = encode(x1, y1), t = encode(x2, y2);
vector<int> dist(n * m, -1), par(n * m, -1);
queue<int> q;
dist[s] = 0;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
auto [x, y] = decode(u);
for (int i = 0; i < 8; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
if (!check(nx, ny)) continue;
int v = encode(nx, ny);
if (dist[v] == -1) {
dist[v] = dist[u] + 1;
par[v] = u;
q.push(v);
}
}
}
if (dist[t] == -1 || k < dist[t] || ((k - dist[t]) & 1)) {
cout << "No" << "\n";
return;
}
if (dist[t] == 0) {
if (k == 0) {
cout << "Yes" << "\n";
return;
}
int f = -1;
auto [sx, sy] = decode(s);
for (int i = 0; i < 8; i++) {
int nx = sx + dx[i];
int ny = sy + dy[i];
if (check(nx, ny)) {
f = encode(nx, ny);
break;
}
}
if (f == -1) {
cout << "No" << "\n";
return;
}
cout << "Yes" << "\n";
int cycles = k / 2;
for (int i = 0; i < cycles; i++) {
auto p1 = decode(f);
cout << p1.fi << " " << p1.se << "\n";
auto p2 = decode(s);
cout << p2.fi << " " << p2.se << "\n";
}
return;
}
cout << "Yes" << "\n";
vector<int> ans;
int cur = t;
while (cur != -1) {
ans.pb(cur);
cur = par[cur];
}
reverse(all(ans));
int d = ans.size() - 1;
int c = (k - d) / 2;
for (int i = 1; i < ans.size(); i++) {
auto [u, v] = decode(ans[i]);
cout << u << " " << v << "\n";
}
auto [u1, v1] = decode(ans[ans.size() - 2]);
auto [u2, v2] = decode(ans[ans.size() - 1]);
for (int i = 0; i < c; i++) {
cout << u1 << " " << v1 << "\n";
cout << u2 << " " << v2 << "\n";
}
}
F 小红的⑨
- 下推 $dp1[u][d]$ :节点 $u$ 的子树中距离 $u$ 恰好为 $d$ 的节点数;
- 上推 $dp2[u][d]$ :不在 $u$ 子树(即“向上及其它分支”)中距离 $u$ 恰好为 $d$ 的节点数;
- 记 $K = 9$
对于 $child[v]$(父是 $u$),可以用 $total[u][d-1]$(即 $u$ 的所有方向在距离 $d-1$ 的节点数)减去来自 $v$ 子树的那些在 $u$ 距离为 $d-1$ 的节点(对应 $dp1[v][d-2]$)得到 $dp2[v][d]$ ;
最终每个节点答案为 $dp1[u][K] + dp2[u][K]$(等于 $total[u][K]$)。
void solve() {
int n;
cin >> n;
vector<vector<int>> g(n + 1);
for (int i = 1; i < n; ++i) {
int u, v;
cin >> u >> v;
g[u].pb(v);
g[v].pb(u);
}
vector<int> fa(n + 1, -1);
vector<int> order;
order.pb(1);
fa[1] = -1;
for (int i = 0; i < order.size(); ++i) {
int u = order[i];
for (int v : g[u]) {
if (v == fa[u]) continue;
fa[v] = u;
order.pb(v);
}
}
vector<array<int, 10>> dp1(n + 1), dp2(n + 1);
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= 9; ++j) {
dp1[i][j] = 0;
dp2[i][j] = 0;
}
}
for (int i = n - 1; i >= 0; --i) {
int u = order[i];
dp1[u][0] = 1;
for (int v : g[u]) {
if (v == fa[u]) continue;
for (int j = 1; j <= 9; ++j) {
dp1[u][j] += dp1[v][j - 1];
}
}
}
for (int i = 0; i < n; ++i) {
int u = order[i];
array<int, 10> tot;
for (int j = 0; j <= 9; ++j) tot[j] = dp1[u][j] + dp2[u][j];
for (int v : g[u]) {
if (v == fa[u]) continue;
dp2[v][0] = 0;
for (int j = 1; j <= 9; ++j) {
int t = tot[j - 1];
if (j - 2 >= 0) t -= dp1[v][j - 2];
dp2[v][j] = t;
}
}
}
for (int i = 1; i <= n; ++i) {
cout << dp1[i][9] + dp2[i][9] << " ";
}
cout << "\n";
}